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TEMPERATURES 

The electron distribution function and the rate  constant for ionization of a toms by e lec t ron 
impacts  have been calculated as they apply to the conditions that are  charac te r i s t i c  of a 
shock wave - namely, the energy distribution of the electrons and the ionizat ion-rate  con-  
stants are  determined as functions of the tempera ture  of the heavy par t ic les .  The energy 
dependence of the effective c ross  section for the excitation of an atom by electron impact  is 
assumed to be l inear.  Equations of the Fokker -P lanck  type are  used in the solution of the 
problem,  and the range of t empera tu res  and concentrat ions in which the deviation of the 
distribution f rom Maxwellian leads to a substantial  change of the ionizat ion-rate  constant 
is determined.  

The resultant  ionization rate due to e lectron impact, which includes multistep t ransi t ions  through the 
excited states of the atom, is proport ional  at high t empera tu res  to the number of e lect rons  whose energy is 
sufficient to excite the f i rs t  level of the atom. In the p roces s  of such an excitation the e lectron loses an 
energy A e -  > E~ (E 1 is the energy of the f i r s t  excited state, measured  f rom the ground level). If the average 
electron energy is severa l  t imes as  small  as A~, then in the overwhelming majori ty  of cases  the e lectron 
no longer has an energy r e s e r v e  sufficient to repeat  such a collision after  a collision that ends in the exi ta-  
tion of an atom. Thus, ionization of coll isions leads to a reduction of the density of e lect rons  n(e >El) ca -  
pable of exciting an atom (i.e., the number n(e >Et) that determines  the ionization rate is itself dependent 
on this rate).  

The problem of determining the ionizat ion-rate  constant can be reduced to calculating the e lectron 
distribution function. This distribution function differs f rom the equilibrium distribution during the p rocess  
of ionization in a shock wave and is determined by the balance between the depar ture  of e lectrons f rom the 
high-energy region during inelastic collisions and the replenishment  of these losses  due to elast ic  collisions 
of electrons with e lect rons ,  atoms,and ions. 

A simple approximate method of calculating the ionizat ion-rate  constant of a gas in a shock wave has 
been developed by Petschek and Byron [1]. In accordance  with [1] the e lectron distribution function is a 
assumed to be Maxwellian at all energies ,  and its only difference f rom the equilibrium distribution function 
res ides  in the fact that the e lectron tempera ture  T e is not equal to the t empera tu re  T of the heavy par t ic les  
during the ionization p rocess .  The electron tempera tu re  is calculated by means of the L. D. Landau re l axa -  
tion equation [2] with allowance for the expenditure of e lect ron energy for ionization. The tempera ture  T e 
does not differ f rom T in order  of magnitude (T e < T) even for a pronounced deviation of the gas compos i -  
tion f rom the equilibrium composition; however,  the ionizat ion-rate  constant,  which depends exponentially 
on the e lectron tempera ture ,  is much smal le r  than its equil ibrium value corresponding to equality of the 
t empera tu res  Te = T. Fur ther  on, the problem of the deviation of the electron distribution function f rom 
the equilibrium distribution function due to various inelastic p roces se s  and of the corresponding change of 
the ionizat ion-rate  constant or  of the excitation of a toms has been considered in a number of papers  (see, 
for example, [3-7]). The presen t  paper  is a direct  continuation of an investigation of the ionization of a 
monatomic gas in a shock wave begun by Petschek and Byron. The difference between the presen t  s tatement  
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of the p rob lem and [4] r e s i d e s  in the fact  that the e lec t ron  distr ibution function is not a s sumed  to be Max-  
wellian.  

1 .  S t a t e m e n t  o f  t h e  P r o b l e m  

Let us cons ider  an opt ical ly  dense gas having a constant  a tomic  t e m p e r a t u r e  T far  f r o m  ionization 
equi l ibr ium where  recombina t ion  may be neglected.  We shall cons ider  the t e m p e r a t u r e  to be sufficiently 
high so that  the ionization p r o c e s s  does not have a diffusion cha rac t e r  and is de te rmined  by the kinet ics  of 
the t rans i t ion  of an a tom f r o m  the ground state to the f i r s t  exci ted s ta te .  Direct  t rans i t ions  f r o m  the ground 
state  to higher leve ls  a r e  neglected as  a consequence of the sma l lnes s  of the corresponding c r o s s  sect ions .  
The scheme cons idered  by the ionization p r o c e s s  is r ea l i zed  in the case  when the quas i s ta t ionary  population 
n 1 es tabl i shed for  the f i r s t  exci ted state during ionization is much lower than i ts  equi l ibr iums value nl*. 

The des i red  t e m p e r a t u r e  boundary above which 

nl ~ hi* (i. i) 

is determined from the balance of electrons situated at the first excited level in the quasistationary approx- 
imation: 

dn~/dt : 0 
(1.2) 

Using (1.2), it may be shown that the population n 1 is de te rmined  by the following re la t ionship  for  the 
condition (1.1): 

f ~ie eX E i - - E  ~12 ^_~ E I - - E 2  ~- I  

where  Crle is the c r o s s  sect ion for  the t rans i t ion  f rom the f i r s t  exci ted s tate  to the continuous spec t rum;  
aik is the c r o s s  sect ion of the t rans i t ion  between the i and k bound s ta tes .  Consequently,  in o rde r  for  (1.1) 
to be fulfilled it is ,  in any case ,  sufficient to r equ i re  that  

exp (-- I i  / re) (~i~ -k ~12) / ~10 ~ i 

where  11 is the potent ia l  for  ionization f r o m  the f i r s t  exci ted s tate  of the a toms .  Typical  va lues  of the ra t io  
(am+ al2)/~10 have an o r d e r  of magnitude [8-10] equal to 102. F r o m  this we obtain 5I e >I 1 for  the t e m p e r a t u r e  
boundary.  For  a toms  for  which, as  in hydrogen,  the ra t io  between the potent ia ls  for  ionization f r o m  the 
f i r s t  and ground s ta tes  is I1/I = l/4 the inequality may be wri t ten in the fo rm 

20T, > I 

The kinetic equation for  the e lec t ron  dis t r ibut ion function f ( t ,  e) has the f o r m  

(1.3) 

f = I ~ + L = + L ~ + I ~  (i.4) 

In the r ight  side of Eq. (1.4) the symbols  Ice,  Iea,  and Iei denote the corresponding in tegra l s  for  co l -  
l is ions of e lec t rons  with electrons~ atoms, and ions. The t e r m  I i takes  ionization into account.  

We shall  a s s u m e  that the energy  is substant ia l ly  lower than during e l e c t r o n - a t o m  elas t ic  col l is ions.  
This  imposes  a spec i f i c  condition on the e lec t ron  concentra t ion c = ne/na (ne and n~ a r e  the numbers  of 
e lec t rons  and a toms pe r  unit volume).  If ree(~) and Tea (~) r e spec t ive ly  denote the e l e c t ron -e l ec t ron  and 
e l ec t ron -a tom re laxa t ion  t imes ,  then the conditions imposed  on the concentra t ion ean be wr i t ten  in the f o r m  

~ e ~ e ~  (1.5) 

~We have in mind equi l ibr ium re la t ive  to the ground s ta te  of the a tom.  
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The r e l axa t ion  t ime  is 

(4 - -  rv<0  (AE)VOt> 

where  (ff(AE)2/~t> is the m e a n - s q u a r e  of the energy  change of an e l ec t ron  p e r  unit t ime  for the given type 
of co l l i s ions  in a medium that  is  in the rmodynamic  equ i l ib r ium.  F o r  e l e c t r o n - e l e c t r o n  co l l i s ions  

<O (AEee) a / Ot> = 2v'~OQneT, / (ms) '/" (1.6) 

where  m is the e l e c t r o n  mass  and Q is the Coulomb logar i thm.  F o r  e l e c t r o n - a t o m  e l a s t i c  eo l l i s i i ons  having 
a s ca t t e r i ng  c r o s s  sec t ion  aea we have 

<0 (AEer ~ / or> = 2'l'M-Irn'/'~e,,naTe'l' 

where  M is  the m a s s  of an a tom.  The condit ion (1.5) y i e ld s  

c ~ .  rns~/MI2Q (1.7) 

for  the energy  range  e > E 1 with a l lowance for  the fact  that  e 4 / a e a  ~ ! 2. 

Bes ides  the quant i t ies  Tee and t e a  t he re  is  s t i l l  another  t ime  sca l e  in the p r o b l e m  - the c h a r a c t e r i s t i c  
ioniza t ional  r e l axa t ion  t ime  r i  N (Kr~) -1, where  K is the i o n i z a t i o n - r a t e  constant .  The case  when Ti s a t i s f i e s  
the inequal i ty  

(1.8) 

is  of g r e a t e s t  p r a c t i c a l  i n t e r e s t .  

Equations (1.5) and (1.8) al low cons ide r a b l e  s impl i f i ca t ion  of the kinet ic  equation (1.4). In the in t e rva l  
0 < e < E 1 t he re  a r e  no e l a s t i c  co l l i s ions  of e l ec t rons  with unexci ted  a toms .  The re fo re ,  dur ing a t ime  of the 
o r d e r  of Tee a Maxwell  d i s t r ibu t ion  having the t e m p e r a t u r e  T e is  e s t ab l i shed  in th is  energy  range;  th is  d i s -  
t r ibu t ion  is somewhat  v io la ted  as  a consequence of co l l i s ions  with heavy p a r t i c l e s  and the diffusion flux of 
e l ec t ron  energy  in the in te rva l  e >E 1 where  t he re  a r e  l a rge  exci ta t ion  l o s s e s ,  and a l so  as  a consequence of 
ine l a s t i c  co l l i s ions  with a toms  that  a r e  in h igher  exc i ted  s t a t e s .  Each of these  p r o c e s s e s  d i s r u p t s  the Max-  
wel l  d i s t r ibu t ion  of the e l e c t r o n s  only ins igni f icant ly .  

The f i r s t  i s  ineffect ive  as  a consequence of the inequal i ty  (1.5) and 

~ ~ z,irn / M - ~  T~i (1.9) 

Here rei  is the relaxation time for elastic collisions between electrons and ions. 

The second source of violation of the Maxwell distribution is small, because in the interval r >E l (in 
the investigated temperature range) an exponentially small part of the overall number of electrons is in a 
gas that is in thermodynamic equilibrium and consequently the energy flux in the absence of equilibrium is 
exponentially small. 

The third process is insubstantial because the number of electrons situated in higher excited states 
is exponentially small in comparison with the overall number of electrons. Thus, in the interval ~ < E l 
there is a Maxwell distribution, and the problem can be reduced to calculating the electron temperature 
that may be found from the relaxation equation for a two-temperature gas with ionization energy losses. 

It may be shown that in order to fulfill the inequality (1.8) the temperature T e must not be too high; 
namely, T e < Is - i ,  where ~ N5-6. From what is said further on it will become evident that this condition, 
which limits the temperature from above, is always fulfilled for the quasistationary stage of ionization in 
the shock wave. 

In order to write the relaxation equation in closed form it is necessary first to find the electron dis- 
tribution function at high energies ~ > E l on which the ionization rate depends. The deviation of the electron 
distribution function from Maxwellian in the interval ~ > E l is considerably larger than it is at low energies. 
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This i s  r e l a t e d  to the fact  that  for  ~ >E i an in tensive 
energy dra in  occu r s .  The c r o s s  sec t ions  for  the 
exci ta t ion of a toms by e l ec t rons  a r e  c lose  to the g a s -  
kinetic  c r o s s  sec t ions ,  and for  each such co l l i s ion  
an energy Ac >> T e is  los t .  The mechan i sm that  c o m -  
pensa t e s  these  l o s s e s  - e l a s t i c  co l l i s ions  of e l ec t rons  
with e l ec t rons  and with heavy p a r t i c l e s  - is  c h a r a c -  
t e r i z e d  by effect ive c r o s s  sec t ions  that  a r e  a l so  
c lose  to the ga s -k ine t i c  c r o s s  sec t ions  for  e l e c t r o n -  
e l ec t ron  col l i sons  and a r e  ~ m/M t i m e s  as  s m a l l  
for  co l l i s ions  with heavy p a r t i c l e s .  Moreover ,  the 
effect ive Coulomb c r o s s  sec t ions  for  ~ > E 1 a r e  con-  
s ide rab ly  s m a l l e r  than for  c ~ T e. 

As a consequence of the pronounced v io la t ion  
of the Maxwell  d i s t r ibu t ion  of the e l e c t r o n s  for  ~ >E l, 

the co l l i s ion  in t eg ra l s  Ice , Iea, and Iei a r e  r e l a t e d  to each other  in inve r se  p ropor t ion  to the co r respond ing  
r e l axa t ion  t i m e s .  Consequently,  in accordance  with (1.5) and (1.9) the in t eg ra l s  for  co l l i s ions  with heavy 
p a r t i c l e s  may be neg lec ted  at  ene rg ie s  s >E i. 

The r e s t o r a t i o n  of equ i l ib r ium in the in t e rva l  s > E i takes  p lace  chief ly v ia  co l l i s ions  with e l ec t rons  
having an energy  ~ < E 1 (such e l ec t rons  a r e  the overwhelming  major i ty ) ,  which have a Maxwell  d i s t r ibu t ion  
and a re  c h a r a c t e r i z e d  by the t e m p e r a t u r e  T e. This  means  that  the r e s t o r a t i o n  of the equ i l ib r ium d i s t r i b u -  
t ion function may be t r e a t e d  as  the r e l axa t ion  in a medium having a t e m p e r a t u r e  T e. The co l l i s ion  in teg ra l  
Ice may be r e p r e s e n t e d  in the fo rm of a d i f fe ren t i a l  r e l a t ionsh ip  of the F o k k e r - P l a n c k  type by expanding 
the d i s t r ibu t ion  function in the magnitude of t he  energy  t r a n s f e r r e d  during a co l l i s ion .  Such an opera t ion  
is  l eg i t ima te ,  s ince  the en t i r e  expansion is mul t ip l ied  by the Ruther ford  c r o s s  sect ion which has a sha rp  
maximum in the range  of sma l l  angles  that  a r e  p r e c i s e l y  the ones co r re spond ing  to s m a l l  ene rgy  t r a n s f e r s .  
Taking account of a l l  that  has been sa id  above, one may r e p r e s e n t  (1.4) in the form of an equation of the 
F o k k e r - P l a n c k  type with a source  

f = - ~  

Here <0 (AEee ) /0 t  ) is  defined by Eq. (1.6); the dens i ty  of the leve ls  is  ~o(e) = 4~m-~/2(2e)i/2; ~i is the 
c r o s s  sect ion for  the exci ta t ion  of an a tom f rom the ground s ta te  to the f i r s t  exc i ted  s ta te  and is in te rpo la ted  
by a l i nea r  function of the energy  [11, 12] 

Here  0(x) is  the Heavis ide  function; ~ depends on the speci f ic  type of a toms .  F o r  the ma jo r i t y  of e l e -  
ments  ~ ~  10 -i6 cm 2. 

Equation (1.10) p e r m i t s  fu r the r  s impl i f i ca t ion  as  i t  appl ies  to the p r ob l e m  cons ide red .  Let us in -  
t roduce  a d i s t r ibu t ion  function that  is  n o r m a l i z e d  to one e l e c t r o n f  = nef  1. Then the lef t  s ide of Eq. (1.10) 
is  wr i t t en  in the fo rm 

f = fin, + h , , :  

In acco rdance  with the definit ion of the i on i za t i on - r a t e  constant  K we have the following r e s u l t  f a r  
f rom ioniza t ional  equ i l ib r ium where  the r ecombina t ion  p r o c e s s  may be neglected:  

he" .~_ K n e n  a 

The ion i za t i on - r a t e  constant  is  r e l a t e d  to f i  as  fol lows: 

co / 28 \ ' / '  

E~ 

(1.11) 

(1.12) 
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Compar ing  the quant i ty  f i n  d of  the las t  t e r m  in the r igh t  s ide of Eq. (1.10) and a s s u m i n g  that  in the 
t e m p e r a t u r e  r ange  c o n s i d e r e d  the inequal i ty  

c~ 

I ]i (e) ~ (e) d e ' ~  i 
E t  

holds ,  we d i r e c t l y  obtain  

Knena/ i  ~ zl (e) nen a (2e / rn)V, [1 

for  a l l  e > E l (with the except ion  of  a v e r y  n a r r o w  e n e r g y  r a n g e  n e a r  the exc i t a t ion  th resho ld ) .  T h e r e f o r e  
the t e r m  f i n  e in the kinet ic  equat ion (1.10) may  be dropped .  The t e r m f { n  e r e m a i n i n g  in the left  s ide of  
(1.10) v a n i s h e s  a f t e r  a t ime  ~ee has  e lapsed ,  and the en t i r e  subsequent  ionizat ion p r o c e s s  t akes  p lace  in a 
q u a s i s t a t i o n a r y  ope ra t ing  mode which is d e s c r i b e d  by the equation* 

(1.13) 

2 .  T h e  S o l u t i o n  o f  t h e  K i n e t i c  E q u a t i o n  

Let  us wr i t e  Eq. (1.13) in the d i m e n s i o n l e s s  v a r i a b l e s  x = e / T  e, fl = E I / T  e. 
shal l  have 

f i " ( x ) + / / ( z ) - - x x ( x - ~ ) f ~ ( x ) = O ,  x > ~  

x = znaTe 3 / ~Qe4neEi = xo / c ,  33, • = ~Ei  ~ / ~Q e~ 

Then ins tead of  (1.13) we 

(2.1) 

The solut ion of Eq. (2.1) that  s a t i s f i e s  the boundary  condi t ion at infinity f l  ~ 0, x -*  + co has  the f o r m  

f1 = BDp(z)exp  - - x /2 ,  z = (4x) v" (x --  ~/2) 

P = - - T  ~ 81f~ 

Here  Dp(Z) is the funct ion fo r  a p a r a b o l i c  cy l inder  [13]. F o r  the subsequen t  a n a l y s i s  it is convenien t  
to in t roduce  the d i m e n s i o n l e s s  quant i t ies  

o) = (4x)/,, a = ' I ~ o ,  p = - %  + V, (a~ - ( ~ )  

In the e n e r g y  range  0 < ~ < E t the d i s t r ibu t ion  funct ion d i f fe r s  c o n s i d e r a b l y  f r o m  Maxwel l ian.  If we 
neg lec t  this  d i f f e rence  and choose  it in the f o r m  

?1 = ( m / 2:~T~)'l'e -x 

it fo l lows that ,  as  wil l  be shown below, the de r i va t i ve s  to the r igh t  and left  fo r  x -~/3 a r e  p r a c t i c a l l y  equal .  
If this  fac t  is t aken  into account ,  then the cons tan t  B is found immed ia t e ly ,  and the d i s t r ibu t ion  funct ion  in 
the r ange  of high e n e r g i e s  is f inal ly  wr i t t en  as  

= [ m2_~V. Op (c0 (z-- ~ f 2)) exp -- (z + ~) 
I1 (2~T e ) 9~(~) (2.2) 

Let  us  make  s e v e r a l  c o m m e n t s  with r e s p e c t  to the behav io r  of the  funct ion Dp(z). F o r  f a i r l y  sma l l  
(i .e.,  fo r  f a i r ly  l a r g e  concen t r a t i ons  and low t e m p e r a t u r e s  ( large  fl)) the index p t akes  l a rge  negat ive  v a l -  

ues .  To the extent  tha t  the concen t r a t i on  d e c r e a s e s  and the t e m p e r a t u r e  i n c r e a s e s ,  the index d e c r e a s e s  in 
modulus ;  f o r  c e r t a i n  va lue s  of c and/3 it p a s s e s  th rough  z e r o ,  and then it  r e t u r n s  to va lues  ~ 10. A f u r t h e r  
i n c r e a s e  is r e s t r i c t e d  by the condi t ion (1.7). 

*S t r i c t ly  speaking,  dur ing a t ime  t >Tee an ope ra t ing  mode  is e s t ab l i shed  in which the d i f f e rence  be tween 
the two co l l i s ion  in t eg ra l s  Iee and I i is  not  z e r o  but much l e s s  than e i the r  one of  them.  
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In the range of low tempera tures  and high concentrations the distorting effect of ionization is p resen t  
to the least  extent, and consequently in this range the form of the distribution function (2.2) is c losest  to 
Maxwellian. The limit co ~ 0 corresponds  to z ~ 0, p- -*-  ~, z2p -~ const being valid. Making the t ransi t ion 
in the limit in (2.2), we find (see Appendix) that 

]i (x) -+ (m 12nr~)*/, e -~ (2.3) 

3 .  C a l c u l a t i n g  t h e  I o n i z a t i o n - R a t e  C o n s t a n t  a n d  E l e c t r o n  T e m p e r a t u r e  

The ionizat ion-rate  constant K is determined by the integral {1.12). This integral  is calculated most  
simply if one uses Eq. (1.13) after multiplying it by q~(e) and integrating f rom E i to + ~o. This yields 

K = 8g~Qe4TeCm ~ \..~__jr~_~e( d/i ]i ) 
~ E t  

Substituting the express ion for  the distribution function (2.2) into the express ion above, we obtain 

I1 (3.1) K 
~fZnT eV' \ Dr(a) ] 

In order  to calculate (3.1) let us consider  the plane cfl and draw lines having equal indices p on it 
(i.e., solutions of the equation p = const). 

The point 71 on the graph (Fig. 1) cor responds  to the equilibrium concentrat ion for He at Te = 2.46 eV and an 
atomic density 2.7.1019 cm ~. The points lying on the ver t ica l  s traight  line below the point T1 charac te r ize  
a gas state in which the concentrat ion of charged par t ic les  is lower than the equilibrium value. 

The line p = 0 divides the entire plane into two par t s .  In the upper par t  the index p <0. It increases  
in modulus when the t ransi t ion is made f rom line to line upward. In the r ight  upper corner  of the plane the 
distribution function goes over  to a Maxwellian distribution function. This cor responds  to the limit (2.3). 
It is therefore  c lear  that in the domain r 1 the function Dp(z) is defined by the asymptot ic  behavior obtained 
for  the conditions z ~ 0 ,  p ~  ~6 in such a way that z2p = const. This asymptot ic  behavior is found in the Ap- 
pendix. The t ransi t ional  domain I~ f rom the asymptot ic  behavior to the values of the function Dp(z) for 
p >0 is fair ly nar row (the index p var ies  f rom 0 to ~ - 1 0  in it). 

In the domain I~ of the plane cfl Eq. {3.1) is calculated simply for integer p, since the function Dp(z) 
in this case can be reduced to Hermite polynomials  Hp: 

Dv (z) = 2-V'V exp ( .  z 2 / 4) H v (z / V'2) 

In o rder  to calculate the ionizat ion-rate  constant for fract ional  values of p it is sufficient to use l inear 
interpolation with r e spec t  to p. 

Let us now go over  to determining the t empera tu re  of the Maxwell distribution of the electrons at 
energies  e < E t. Let us write the energy-balance  equation with allowance for e lec t ron-a tom and e lec t ron-  
ion elast ic  collisions and inelastic collisions of e lect rons  with atoms ending with ionization: 

d 3 

0 0 0 

(3.2) 

The rate  of change of the electron energy with t ime appears  in the left side of (3.2). This t e rm may 
be represen ted  in such a form because the overwhelming majori ty  of the electrons has a Maxwellian dis t r ibu-  
tion function with a tempera ture  Te. Taking account of the fact that the atoms and ions have a Maxwell d is -  
tr ibution with a t empera tu re  T, Eq. (3.2) may be given the form 

r e" = - (I  ~- Te) n~,K 32%an a 1 / " ~  4 V'2-~e4Qn e Y'm (T~ - -  T) (3.3) 
3 ~ f '~M " (Te - -  T) 3Mreq, 
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Here we have taken into account the fact that the derivative dne/dt  is defined by (1.11). We shall seek 
the solution of Eq. (3.3) in the quasis ta t ionary approximation (i.e., we neglect the dependence of Te on time); 
then from (3.3) we immediately obtain 

4%aTe ~ ~-1 I D 'In) 
Tm ~Q#c ) I D~(a) (3.4) 

The function T e depends approximately logar i thmical ly  on T and on other pa rame te r s  that are included 
in the t ranscendental  equation (3.4). Therefore  for any reasonable  values of the p a r a m e t e r s  the e lectron 
tempera ture  in the quasis ta t ionary state of ionization is bounded f rom above. Thus, for example, if T ~ I, 
then T e ~ T/5. 

4 .  A n a l y s i s  o f  t h e  R e s u l t s  

Consideration of the deviation of the distribution function of the e lect rons  f rom Maxwellian leads to a 
reduction of the ionizat ion-rate  constant for a stipulated value of T e. If the electron distribution function 
at all energies is cha rac te r i zed  by the t empera tu re  Te, then, as is well known, 

g (Te) = 

Let us introduce 

K = K(Te)I I  

Since in the domain F 1 the "tail" of the distribution is slightly distorted,  the function II there  differs 
only slightly f rom unity. Actually, f rom (3.1) we obtain an expression for II which may be expanded in powers  
of ~ by using the smal lness  of this quantity in the domain Q: 

[I = i -- o~ 2 + 0 ( 0  4 ) 

The grea tes t  difference between II and unity should be expected in the domain F3, because in this do- 
main the distribution function is great ly  distorted.  Let us pe r fo rm the calculations for  integer p = n and 
assign the appropriate  number to all of the values.  F rom the equations p = n we determine the dependence 
of the concentrat ions on tempera ture :  

c,~ (9) = • [9 ~ 8 (n + lh) (1 + t6~ -2 (n + lh)2)'/~ + 32~-1 (n + lh)2]-' 

The functions II n may be obtained f rom the general  resul t  (3.1). The resul t s  of the calculations are  
conveniently represen ted  in the form of a graph. 

The state of He gas described by the point T2 in Fig. 1 cor responds  to point T3 in Fig. 2. F rom the 
graphs it is evident that in the domain F 3 considerat ion of the  distort ion of the tail of the distribution leads 
to a substantial change of the ionizat ion-rate  constant. As the concentration decreases ,  this change increases .  
The case of low concentrat ions that do not correspond to the inequality (1.7) (i.e., concentrat ions for which 
elast ic collisions of e lec t rons  with atoms in a h igh-energy range become substantial) differs in a number 
of features .  This case is not considered in the present  paper .  

It remains  for us to show the validity of the matching of the distribution function (2.2). The derivative 
on the left side is obtained by differentiating the Maxwellian distribution and is equal to - T  e (m/27rTe)3/2e -fi 
at the point x = ft. The derivative onthe  r ight  side is obtained f rom Eq. (2.2),which is ve ry  close to (2.3) in 
the domain 1~. The grea tes t  difference between the derivat ives is attained in the domain F3,where the d i s -  
torting effects of the ionization become substantial.  Nevertheless ,  the possibi l i ty of matching is still p r e -  
served.  For  example, for n = 0 the derivative on the r ight is equal to 

~I'/. s I,/, l,/q / ,~ v / .  _o 1(1+~_It+ ~_Ii + + (4.1) 
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The express ion  in the square brackets  of (4.1) is prac t ica l ly  no different  f rom unity wherever  the 
inequality (1.3) is fulfil led. 

A P P E N D I X  

Let  us find the asymptot ic  fo rm of the function Dp(z) for the condition z - - 0 ,  p-*-~o,  z2 p ~  co , s t .  Let  
us use the integral  r epresen ta t ion  for the function Dp(z) in the case of negative p: 

x P + I  
O 

We calculate  this in terval  by the method of s teepes t  descent. For  the inflection point x 0 we obtain 

2x0-----(z 2 - F 4 k ) ' / ' - z ,  k = - - ( p - F  i) 

Now (1) takes the fo rm 

~a 

r(--p) exp - : - - z x o - - - - - f - - - F k l n x o  - -  exp - - t - - ~  (2) 
@ 

Equation (2) is equal to (1) with high accuracy  if 

x0 ~ (t + k / xo~)w. (3) 

On the cfl plane the inequality (3) defines the domain of applicability of the des i red  asymptot ic  behavior  
in the problem given. A numer ica l  analysis of it shows that the asymptot ic  behavior  is a good r e p r e s e n t a -  
tion of the function Dp(z) for  p { - 1 0 .  When the condition (3) is fulfilled the integral  (2) is eas i ly  calculated. 
The re su l t  has the following form with an accuracy  of up to the t e rm  z2/q'k. 
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