THE IONIZATION-RATE CONSTANT AT HIGH TEMPERATURES
HIGH ELECTRON CONCENTRATIONS

Yu. P. Denisov and N. M. Kuznetsov

The electron distribution function and the rate constant for ionization of atoms by electron
impacts have been calculated as they apply to the conditions that are characteristic of a
shock wave — namely, the energy distribution of the electrons and the ionization-rate con-
stants are determined as functions of the temperature of the heavy particles. The energy
dependence of the effective cross section for the excitation of an atom by electron impact is
assumed to be linear. Equations of the Fokker-Planck type are used in the solution of the
problem, and the range of temperatures and concentrations in which the deviation of the
distribution from Maxwellian leads to a substantial change of the ionization-rate constant

is determined.

The resultant ionization rate due to electron impact, which includes multistep transitions through the
excited states of the atom, is proportional at high temperatures to the number of electrons whose energy is
sufficient to excite the first level of the atom. n the process of such an excitation the electron loses an
energy Ae=E; (E; is the energy of the first excited state, measured from the ground level). If the average
electron energy is several times as small as Ae, then in the overwhelming majority of cases the electron
no longer has an energy reserve sufficient to repeat such a collision after a collision that ends in the exita-
tion of an atom., Thus, ionization of collisions leads to a reduction of the density of electrons n(e >E;) ca-
pable of exciting an atom (i.e., the number n(e >E;) that determines the ionization rate is itself dependent
on this rate).

The problem of determining the ionization-rate constant can be reduced to calculating the electron
distribution function. This distribution function differs from the equilibrium distribution during the process
of ionization in a shock wave and is determined by the balance between the departure of electrons from the
high-energy region during inelastic collisions and the replenishment of these losses due to elastic collisions
of electrons with electrons, atoms,and ions.

A simple approximate method of calculating the ionization-rate constant of a gas in a shock wave has
been developed by Petschek and Byron [1]. In accordance with [1] the electron distribution function is a
assumed to be Maxwellian at all energies, and its only difference from the equilibrium distribution function
resides in the fact that the electron temperature Te is not equal to the temperature T of the heavy particles
during the ionization process. The electron temperature is calculated by means of the L. D. Landau relaxa~-
tion equation [2] with allowance for the expenditure of electron energy for ionization. The temperature Tg
does not differ from T in order of magnitude (Tg < T) even for a pronounced deviation of the gas composi-
tion from the equilibrium composition; however, the ionization-rate constant, which depends exponentially
on the electron temperature, is much smaller than its equilibrium value corresponding to equality of the
temperatures Te = T. Further on, the problem of the deviation of the electron distribution function from
the equilibrium distribution function due to various inelastic processes and of the corresponding change of
the ionization-rate constant or of the excitation of atoms has been considered in a number of papers (see,
for example, [3-7]). The present paper is a direct continuation of an investigation of the ionization of a
monatomic gas in a shock wave begun by Petschek and Byron. The difference between the present statement
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of the problem and [4] resides in the fact that the electron distribution function is not assumed to be Max-
wellian.

1. Statement of the Problem

Let us consider an optically dense gas having a constant atomic temperature T far from ionization
equilibrium where recombination may be neglected. We shall consider the temperature to be sufficiently
high so that the ionization process does not have a diffusion character and is determined by the kinetics of
the transition of an atom from the ground state to the first excited state. Direct transitions from the ground
state to higher levels are neglected as a consequence of the smallness of the corresponding cross sections.
The scheme considered by the ionization process is realized in the case when the quasistationary population
n; established for the first excited state during ionization is much lower than its equilibriumi value n;*,

The desired temperature boundary above which

m << (1.1)
is determined from the balance of electrons situated at the first excited level in the quasistationary approx-
imation:

dn,jdi = 0
f (1.2)

Using (1.2), it may be shown that the population n; is determined by the following relationship for the
condition (1.1):

S —_ —E -1
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where oy is the cross section for the transition from the first excited state to the continuous spectrum;
ojk is the cross section of the transition between the i and k bound states. Consequently, in order for (1.1)
to be fulfilled it is, in any case, sufficient to require that

exp (— I/ T,) (61 + 613) [ S1o >>1

where Ij is the potential for ionization from the first excited state of the atoms. Typical values of the ratio
(016 + 015) /01y have an order of magnitude [8-10] equal to 10>, From this we obtain 51 >I; for the temperature
boundary. For atoms for which, as in hydrogen, the ratio between the potentials for ionization from the
first and ground states is L /I="/, the inequality may be written in the form

20T, >1 1.3)

The kinetic equation for the electron distribution function f(t, €) has the form

f=Iee+Iea+Ie'i.+I£ (1-4)

In the right side of Eq. (1.4) the symbols Ige, lea, and Iej denote the corresponding integrals for col-
lisions of electrons with electrons, atoms, and ions. The term J; takes ionization into account,

We shall assume that the energy is substantially lower than during electron-atom elasticcollisions.
This imposes a specific condition on the electron concentration ¢ = ng/n; (ne and n, are the mumbers of
electrons and atoms per unit volume). K ree(e) and 7o (g) respectively denote the electron-electron and
electron-atom relaxation times, then the conditions imposed on the concentration can be written in the form

Toe K Tea (1.5)

TWe have in mind equilibrium relative to the ground state of the atom.
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The relaxation time is

1 (g) ~ T2/(0 (AE)*]0t)

where (o (AE)?/ ot) is the mean-square of the energy change of an electron per unit time for the given type
of collisionsin a medium that is in thermodynamic equilibrium. For electron-electron collisions

(0 (AE,)? 0ty = 2"ne*Qn,T . | (me)™ (1.6)

where m is the electron mass and Q is the Coulomb logarithm. For electron-atom elastic collisiions having
a scattering cross section vgg we have

D (AE )3ty = 21M*m's,4n, Te™

where M is the mass of an atom. The condition (1.5) yields
2
¢ > met/MI*Q a.m

for the energy range € > E, with allowance for the fact that e!/o o4 ~ E.

Besides the quantities 7o and reg there is still another time scale in the problem — the characteristic
jonizational relaxation time 71~ (Kna)"i, where K is the ionization-rate constant. The case when 7 satisfies
the inequality

T > Tee (1 .8)

is of greatest practical interest.

Equations (1.5) and (1.8) allow considerable simplification of the kinetic equation (1.4). In the interval
0 < £ <E; there are no elastic collisions of elecfrons with unexcited atoms. Therefore, during a time of the
order of 7., a Maxwell distribution having the temperature T is established in this energy range; this dis-
tribution is somewhat violated as a consequence of collisions with heavy particles and the diffusion flux of
electron energy in the interval & >E; where there are large excitation losses, and also as a consequence of
inelastic collisions with atoms that are in higher excited states. Each of these processes disrupts the Max-
well distribution of the electrons only insignificantly.

The first is ineffective as a consequence of the inequality (1.5) and

Tee~Tam [ M <L Tt (1.9)

Here 71¢i is the relaxation time for elastic collisions between electrons and ions.

The second source of violation of the Maxwell distribution is small, because in the interval ¢ >E, (in
the investigated temperature range) an exponentially small part of the overall number of electrons is in a
gas that is in thermodynamic equilibrium and consequently the energy flux in the absence of equilibrium is
exponentially small,

The third process is insubstantial because the number of electrons situated in higher excited states
is exponentially small in comparison with the overall number of electrons. Thus, in the interval & <E,
there is a Maxwell distribution, and the problem can be reduced to calculating the electron temperature
that may be found from the relaxation equation for a two-temperature gas with ionization energy losses.

It may be shown that in order to fulfill the inequality (1.8) the temperature Ty must not be too high;
namely, T, < Io~!, where o ~5-6. From what is said further on it will become evident that this condition,
which limits the temperature from above, is always fulfilled for the quasistationary stage of ionization in
the shock wave.

In order to write the relaxation equation in closed form it is necessary first to find the electron dis-
tribution function at high energies € > E; on which the ionization rate depends. The deviation of the electron
distribution function from Maxwellian in the interval £ > E, is considerably larger than it is at low energies.
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This is related to the fact that for £ >E; an intensive
energy drain occurs. The cross sections for the
excitation of atoms by electrons are close to the gas-

L1 p 4 A kinetic cross sections, and for each such collision
T N .
\ | an energy Ae > Tg is lost. The mechanism that com-
5 2210 "o / pensates these losses — elastic collisions of electrons
-z - ! with electrons and with heavy particles — is charac-
¥, a4
“\T\ p=0 terized by effective cross sections that are also
5 s close to the gas-kinetic cross sections for electron-
- 7 =95 : / == electron collisons and are ~m/M times as small
// ; y for collisions with heavy particles. Moreover, the
] % F effective Coulomb cross sections for ¢ > E; are con-
i than £ ~Ta.
Fig. 1 Fig. 2 siderably smaller than for & ~Tg

As a consequence of the pronounced violation
of the Maxwell distribution of the electrons for ¢ >E;,
the collision integrals Ige, lea, and Lgj are related to each other in inverse proportion to the corresponding
relaxation times. Consequently, in accordance with (1.5) and (1.9) the integrals for collisions with heavy
particles may be neglected at energies € >E,,

The restoration of equilibrium in the interval € > E; takes place chiefly via collisions with electrons
having an energy ¢ <E; (such electrons are the overwhelming majority), which have a Maxwell distribution
and are characterized by the temperature Tq. This means that the restoration of the equilibrium distribu-
tion function may be treated as the relaxation in a medium having a temperature T,. The collision infegral
Iee may be represented in the form of a differential relationship of the Fokker-Planck type by expanding
the distribution function in the magnitude of the energy transferred during a collision. Such an operation
is legitimate, since the entire expansion is multiplied by the Rutherford cross section which has a sharp
maximum in the range of small angles that are precisely the ones corresponding to small energy transfers.
Taking account of all that has been said above, one may represent (1.4) in the form of an equation of the
Fokker-Planck type with a source

=56 75?[@;5) 5t (BB (3—2 + 15—)} —a(e)ne ()" (1.10)

Here (8(AEge)/0t) is defined by Eq. (1.6); the density of the levels is ¢(e) = 47rm'3/2(23)1/2; oj is the
cross section for the excitation of an atom from the ground state to the first excited state and is interpolated
by a linear function of the energy [11, 12]

c;(e) = 06 (e — E\)(e — E,)/E,
Here 6(x) is the Heaviside function; o depends on the specific type of atoms. For the majority of ele-
ments ¢ ~10-16 ¢m?,

Equation (1.10) permits further simplification as it applies to the problem considered. Let us in-
troduce a distribution function that is normalized to one electron r =ngfy. Then the left side of Eq. (1.10)
is written in the form

,f. = jl-ne + fln'e‘

In accordance with the definition of the ionization-rate constant K we have the following result far
from ionizational equilibrium where the recombination process may be neglected:

n, = Knn, (1.11)
The ionization-rate constant is related to 7, as follows:

K = Sj 5 (%:—)l frode (1.12)
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Comparing the quantity fing of the last term in the right side of Eq. (1.10) and assuming that in the
temperature range considered the inequality

8

fi(e)e(e)de<<t

e~

1

holds, we directly obtain

Knenafl < Si (E) nn, (28 / ’n)“/z fl

for all &£ >E; (with the exception of a very narrow energy range near the excitation threshold). Therefore
the term £yng in the kinetic equation (1.10) may be dropped. The term fine remaining in the left side of
(1.10) vanishes after a time 1,4 has elapsed, and the entire subsequent ionization process takes place in a
quasistationary operating mode which is described by the equation*

1 q [8WQne'T, [ ap H ﬂ o j2\re—E 1.1
q;(s)zg{ 3 (ds+?‘_e ‘5"0(7,;} B =0 (19

2. The Solution of the Kinetic Equation

Let us write Eq. (1.13) in the dimensionless variables x=&/Tg, B = E;/Te. Then instead of (1.13) we
shall have

H(@) 4 h (@) Kz (@ — B (2) =0, =B
% = on T3 | nQe*n,Ey = ny/ ¢,  wg=0EP?/nQe (2.1)

The solution of Eq. (2.1) that satisfies the boundary condition at infinity sy =0, x—+, has the form

fL = BD (2)exp —z/2, z = (dn)'< (z — B/2)

1, xpr—1
P=—z+3v:

Here Dy(z) is the function for a parabolic cylinder {13]. For the subsequent analysis it is convenient
to introduce the dimensionless quantities

O = (4%)%7 a="1po, p= -+ (e — 07

In the energy range 0 < £ < E; the distribution function differs considerably from Maxwellian. I we
neglect this difference and choose it in the form

f = (m 20T yhe=
it follows that, as will be shown below, the derivatives to the right and left for x =8 are practically equal.

If this fact is faken into account, then the constant B is found immediately, and the distribution function in
the range of high energies is finally written as

v, D {w(z—B/2) —

2aT, D, (@

Let us make several comments with respect to the behavior of the function Dp(z). For fairly small
w (i.e., for fairly large concentrations and low temperatures (large B8)) the index p takes large negative val-
ues. To the extent that the concentration decreases and the temperature increases, the index decreases in
modulus; for certain values of ¢ and 8 it passes through zero, and then it returns to values ~10. A further
increase is restricted by the condition (1.7).

*Strictly speaking, during a time t >7¢e an operating mode is established in which the difference between
the two collision integrals I,e and Ij is not zero but much less than either one of them.
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In the range of low temperatures and high concentrations the distorting effect of ionization is present
to the least extent, and consequently in this range the form of the distribution function (2.2) is closest to
Maxwellian, The limit w—0 corresponds to z—0, p—>~— 0, z%p— const being valid. Making the transition
in the limit in (2.2), we find (see Appendix) that

fu(@)— (m | 20T Yo 2.3)

3. Calculating the Ionization-Rate Constant and Electron Temperatfure

The ionization-rate constant K is determined by the integral (1.12). This integral is calculated most
simply if one uses Eq. (1.13) after multiplying it by ¢(e) and integrating from E, to +«, This yields

K e 8n2QerT ¢ ( dh + Tl )

m?

e=Ey

Substituting the expression for the distribution function (2.2) into the expression above, we obtain

. V%l:Qr“ce D (“)) (3_1)
k=—mrm (142 D,

In order to calculate (3.1) let us consider the plane ¢8 and draw lines having equal indices p on it
(i.e., solutions of the equation p = const).

The point +v;onthe graph (Fig. 1) corresponds tothe equilibrium concentrationfor He at Te =2.46 eVandan
atomic density 2.7+ 10'® ecm®, The points lying on the vertical straight line below the point vy characterize
a gas state in which the concentration of charged particles is lower than the equilibrium value.

The line p =0 divides the entire plane into two parts. In the upper part the index p <0. It increases
in modulus when the transition is made from line to line upward. In the right upper corner of the plane the
distribution function goes over to a Maxwellian distribution function. This corresponds to the limit (2.3).

It is therefore clear that in the domain I'y the functlon Dp(z) is defined by the asymptotic behavior obtained
for the conditions z—0, p— = in such a way that z%p = const. This asymptotic behavior is found in the Ap-
pendix. The transitional domain I, from the asymptotic behavior to the values of the functmn Dp(z) for

p >0 is fairly narrow (the index p varies from 0 to ~—10 in it).

In the domain Ij of the plane ¢g Eq. (3.1) is calculated simply for intéger p, since the function Dp(z)
in this case can be reduced to Hermite polynomials Hp:

D,(z)=2""exp(—22/4)H, (2] V2)

In order to calculate the ionization-rate constant for fractional values of p it is sufficient to use linear
interpolation with respect to p.

Let us now go over to determining the temperature of the Maxwell distribution of the electrons at
energies £ <E;. Let us write the energy-balance equation with allowance for electron-atom and electron-
ion elastic collisions and inelastic collisions of electrons with atoms ending with ionization:

T:ziT (.‘;. Tene) = §° Iepde + Se Iepde - § Tepde (3.2)

0

The rate of change of the electron energy with time appears in the left side of (3.2). This term may
be represented in such a form because the overwhelming majority of the electrons has a Maxwellian distribu-
tion function with a temperature Te. Taking account of the fact that the atoms and ions have a Maxwell dis-
tribution with a temperature T, Eq. (3.2) may be given the form

. 32s,,7, Vr?f': ] 4 I/Z_:rfe“Qne Vm 3.3
Te”_(I"["Te)naK_"W(Te_T)"W(Te_T) (3.3)
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Here we have taken into account the fact that the derivative dng/dt is defined by (1.11). We shall seek
the solution of Eq. (3.3) in the quasistationary approximation (i.e., we neglect the dependence of Tg on time);
then from (3.3) we immediately obtain

Pt ft (1 )RR (1 S (1 0] 22O

) e—rs} (3.4)

The function Tg depends approximately logarithmically on T and on other parameters that are included
in the transcendental equation (3.4). Therefore for any reasonable values of the parameters the electron
temperature in the quasistationary state of ionization is bounded from above. Thus, for example, if T ~1,
then Tg ~1/5.

4. Analysis of the Results

Consideration of the deviation of the distribution function of the electrons from Maxwellian leads to a
reduction of the ionization-rate constant for a stipulated value of Tg. If the electron distribution function
at all energies is characterized by the temperature Tg, then, as is well known,

ORLATER

Let us introduce

K=K(T)II

Since in the domain Ij the "tail" of the distribution is slightly distorted, the function II there differs
only slightly from unity. Actually, from (3.1) we obtain an expression for IIwhich may be expanded in powers
of w by using the smallness of this quantity in the domain I3:

H=1-— 02+ 0(uY

The greatest difference between II and unity should be expected in the domain [}, because in this do-
main the distribution function is greatly distorted. Let us perform the calculations for integer p =n and
assign the appropriate number to all of the values. From the equations p = n we determine the dependence
of the concentrations on temperature:

cn (B) = %o [P+ 8(n + 1) (1 4- 16872 (n + 1/,)2)% + 32B71 (n + 1,)2]

The functions Il may be obtained from the general result (3.1). The results of the calculations are
conveniently represented in the form of a graph. '

The state of He gas described by the point y, in Fig. 1 corresponds to point y3 in Fig. 2. From the
graphs it is evident that in the domain I3 consideration of the- distortion of the tail of the distribution leads
to a substantial change of the ionization-rate constant. Asthe concentration decreases, this change increases.
The case of low concentrations that do not correspond to the inequality (1.7) (i.e., concentrations for which
elastic collisions of electrons with atoms in a high-energy range become substantial) differs in a number
of features. This case is not considered in the present paper.

It remains for us to show the validity of the matching of the distribution function (2.2). The derivative
on the left side is obtained by differentiating the Maxwellian distribution and is equal to —T, (m/ZwTe)3/ 267
at the point x=8. The derivative onthe right side is obtained from Eq. (2.2),which is very close to (2.3) in
the domain Ij. The greatest difference between the derivatives is atfained in the domain Iy where the dis-
torting effects of the ionization become substantial, Nevertheless, the possibility of matching is still pre~
served. For example, for n =0 the derivative on the right is equal to

- (el o o o A ) w
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The expression in the square brackets of (4.1) is practically no different from unity wherever the
inequality (1.3) is fulfilled.

APPENDIX

Let us find the asymptotic form of the function Dp(z) for the condition z—0, p—~—-, z%p—const. Let
us use the integral representation for the function Dp(z) in the case of negative p:

1 ¢ 2 22\ d
RPN (YRE S LS "
0

We calculate this interval by the method of steepest descent. For the inflection point x, we obtain
2wy = (2% + 4k)r — 3z, k= —(p + 1)

Now (1) takes the form

1 Z42 22 ~ k\ (x— o)
wexp (f-zxo—~—§+klnxo——&—)§exp[(_ —EF) » 0 ] )
Equation (2) is equal to (1) with high accuracy if
o> (1 +k/zd) -

On the cg plane the inequality (3) defines the domain of applicability of the desired asymptotic behavior
in the problem given. A numerical analysis of it shows that the asymptotic behavior is a good representa-
tion of the function Dp(z) for p<—10. When the condition (3) is fulfilled the integral (2) is easily calculated.
The result has the following form with an accuracy of up to the term z%/vk,

-ﬁlf_ip) (1 —4—;/7> exp [%(lnk - 1)] exp (—- z ]/%——2—:—)
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